10.5

Extra Practice

In Exercises 1–4, graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.

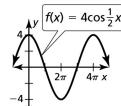
1.
$$g(x) = 2 \tan 4x$$

2.
$$g(x) = 3 \cot \frac{1}{2}x$$

3.
$$g(x) = \frac{1}{4} \tan 2\pi x$$

4.
$$g(x) = \frac{1}{3} \cot \pi x$$

5. Describe and correct the error in describing the transformation of $f(x) = \tan x$ represented by $g(x) = 4 \tan \frac{1}{2}x$.



A vertical stretch by a factor of 4 and a horizontal shrink by a factor of $\frac{1}{2}$

In Exercises 6 and 7, graph g using the graph of f as a guide.

6.
$$g(x) = 4 \sec \frac{1}{2}x$$

In Exercises 8–11, graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.

8.
$$g(x) = \frac{1}{3} \csc \pi x$$

9.
$$g(x) = \frac{1}{2} \sec 6x$$

7. $g(x) = \frac{1}{2} \csc \pi x$

$$10. g(x) = \sec \frac{\pi}{2} x$$

$$11. g(x) = \csc \frac{\pi}{3} x$$

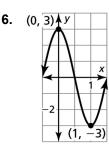
- **12.** You are standing 100 feet from the base of a 150-foot cliff. Your friend is rappelling down the cliff.
 - **a.** Write an equation that gives the distance d (in feet) your friend is from the top of the cliff as a function of the angle of elevation θ .
 - **b.** Graph the function found in part (a). Explain how to graph relates to the situation.

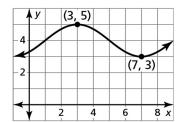
10.6

Extra Practice

In Exercises 1–4, find the frequency of the function.

1.
$$y = \cos 3x$$


2.
$$y = -\cos 4x - 3$$


$$3. \quad y = \sin \frac{\pi x}{2}$$

4.
$$y = 4 \cos 0.4x - 3$$

5. A sub-contra-octave A tuning fork (corresponds to the lowest note on a piano keyboard) vibrates with a frequency f of 27.5 hertz (cycles per second). You strike a sub-contra-octave A tuning fork with a force that produces a maximum pressure of 4 Pascals. Write and graph a sine model that gives the pressure P as a function of the time *t* (in seconds).

In Exercises 6 and 7, write a function for the sinusoid.

8. When you ride a Ferris wheel, your distance from the ground will vary with respect to the number of seconds that have elapsed since the wheel started. The table shows your height h (in meters) above the ground at time t as you ride the Ferris wheel.

t	0	1	2	3	4	5	6	7	8	9	10	11	12	15	20
h	1	2.3	5.8	10.2	13.7	15	13.7	10.2	5.8	2.3	1	2.3	5.8	15	1

- **a.** Use sinusoidal regression to find a model that gives h as a function of t.
- **b.** Predict your height above the ground after 42 seconds have elapsed.